From Wall Spaces to Cat(0) Cube Complexes

نویسندگان

  • Indira Chatterji
  • Graham Niblo
چکیده

We explain how to adapt a construction of M. Sageev’s to construct a proper action on a CAT(0) cube complex starting from a proper action on a wall space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubulating spaces with walls

The elegant notion of a space with walls was introduced by Haglund and Paulin [6]. Prototypical examples of spaces with walls are CAT(0) cube complexes, introduced by Gromov in [5]. The purpose of this note is to observe that every space with walls has a canonical embedding in a CAT(0) cube complex and, consequently, a group action on a space with walls extends naturally to a group action on a ...

متن کامل

Groups acting on CAT(0) cube complexes

We show that groups satisfying Kazhdan’s property (T) have no unbounded actions on nite dimensional CAT(0) cube complexes, and deduce that there is a locally CAT(−1) Riemannian manifold which is not homotopy equivalent to any nite dimensional, locally CAT(0) cube complex. AMS Classi cation numbers Primary: 20F32 Secondary: 20E42, 20G20

متن کامل

Stallings’ folds for cube complexes

We describe a higher dimensional analogue of Stallings’ folding sequences for group actions on CAT(0) cube complexes. We use it to give a characterization of quasiconvex subgroups of hyperbolic groups that act properly co-compactly on CAT(0) cube complexes via finiteness properties of their hyperplane stabilizers.

متن کامل

Isometries of Cat (0) Cube Complexes Are Semi-simple

We show that an automorphism of an arbitrary CAT (0) cube complex either has a fixed point or preserves some combinatorial axis. It follows that when a group contains a distorted cyclic subgroup, it admits no proper action on a discrete space with walls.

متن کامل

Isometry Groups of Cat(0) Cube Complexes

Given a CAT(0) cube complex X, we show that if Aut(X) 6= Isom(X) then there exists a full subcomplex of X which decomposes as a product with R. As applications, we prove that ifX is δ-hyperbolic, cocompact and 1-ended, then Aut(X) = Isom(X) unless X is quasi-isometric to H, and extend the rank-rigidity result of Caprace–Sageev to any lattice Γ ≤ Isom(X).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005